US Air Force Explores Additive Manufacturing Technology


Dr. Dan Berrigan points to an embedded antenna on an MQ-9 Reaper part made possible through functional applications of additive manufacturing. Flexible circuits, embedded antennas and sensors are just a few of the potential manufacturing capabilities his team is exploring using additive technology. (U.S. Air Force photo/Marisa Alia-Novobilski)

WRIGHT-PATTERSON AFB, Ohio — It’s a materials scientist’s dream, but as some experts say, an engineer’s nightmare. For scientists and engineers at the Air Force Research Laboratory’s Materials and Manufacturing Directorate, additive manufacturing, also known as 3-D printing, can be a powerful tool for rapid innovation.

Ultimately, it’s a new way of looking at manufacturing across the materials spectrum and an area with challenges and opportunities that the Air Force is meticulously exploring.

“Additive manufacturing is a huge opportunity for us,” said Dr. Jonathan Miller, a materials scientist and the additive manufacturing lead for the directorate. “It allows us to manufacture unique form factors; it provides the opportunity to add functionality and capability to structures that already exist. Essentially, it allows us to redefine manufacturing.”

Traditional manufacturing methods developed during the times of the Industrial Revolution, when machines began to overtake the human hand for mass production. Many processes required material to be molded or milled away from a larger form to produce a specific design.

Additive manufacturing, by contrast, is defined by ASTM International as the process of joining materials together, layer by layer, based on 3-D model data. It increases design possibilities, enhances the speed of innovation and offers an alternative for creating shapes closer to what an engineer might need, with fewer constraints.

“The biggest problem with conventional manufacturing processes is time,” Miller said. “Manufacturing is an iterative process, and you never get a part ‘just right’ on the first try. You spend time creating the tools to manufacture a complex part and then spend more time when you realize an initial design needs to be modified. Additive manufacturing…



Source link